Artwork

Konten disediakan oleh TGen Talks. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh TGen Talks atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Episode 67: Tiny particles offer big clues toward predicting Alzheimer’s decades in advance

15:14
 
Bagikan
 

Manage episode 398360345 series 1936276
Konten disediakan oleh TGen Talks. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh TGen Talks atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Alzheimer’s disease affects an estimated six million Americans. Diagnosing and treating the disease is challenging, and for families taking care of a loved one with Alzheimer’s, it’s even more difficult. Detecting and addressing the disease early on is crucial due to its progressive nature. However, Alzheimer’s symptoms can resemble those of other non-progressive conditions. In a recent Cells publication, a team of scientists describe using machine learning models to identify changes in RNA molecules of plasma extracellular vesicles (EVs) that may hold potential for identifying Alzheimer’s disease (AD) at its earliest stages. This is one of the first studies to show changes in the RNA molecules of plasma EVs that precede neurodegeneration and provides evidence that some of the hidden pathology taking place early in the disease is reflected in plasma EVs, where it can be accessed in a minimally invasive manner and used for biomarker development. On this edition of TGen Talks, study co-author and TGen Neurogenomics Division staff scientist Joanna Palade, Ph.D., discusses their findings, and how what sound like magic or a fortune teller's promise, is the goal of the scientists working to develop a simple test; one that wouldn't simply indicate whether your symptoms might progress to an Alzheimer's diagnosis, but could also estimate the timeframe for when it might occur.
  continue reading

82 episode

Artwork
iconBagikan
 
Manage episode 398360345 series 1936276
Konten disediakan oleh TGen Talks. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh TGen Talks atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Alzheimer’s disease affects an estimated six million Americans. Diagnosing and treating the disease is challenging, and for families taking care of a loved one with Alzheimer’s, it’s even more difficult. Detecting and addressing the disease early on is crucial due to its progressive nature. However, Alzheimer’s symptoms can resemble those of other non-progressive conditions. In a recent Cells publication, a team of scientists describe using machine learning models to identify changes in RNA molecules of plasma extracellular vesicles (EVs) that may hold potential for identifying Alzheimer’s disease (AD) at its earliest stages. This is one of the first studies to show changes in the RNA molecules of plasma EVs that precede neurodegeneration and provides evidence that some of the hidden pathology taking place early in the disease is reflected in plasma EVs, where it can be accessed in a minimally invasive manner and used for biomarker development. On this edition of TGen Talks, study co-author and TGen Neurogenomics Division staff scientist Joanna Palade, Ph.D., discusses their findings, and how what sound like magic or a fortune teller's promise, is the goal of the scientists working to develop a simple test; one that wouldn't simply indicate whether your symptoms might progress to an Alzheimer's diagnosis, but could also estimate the timeframe for when it might occur.
  continue reading

82 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat