Artwork

Konten disediakan oleh Sanket Gupta. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Sanket Gupta atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Mining Twitter Data for Sentiment Analysis of Events

18:43
 
Bagikan
 

Manage episode 243278350 series 2550866
Konten disediakan oleh Sanket Gupta. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Sanket Gupta atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Twitter is a rich source of live information. Is it possible to run sentiment analysis on what the world is thinking as an event unfolds over time? Could we track Twitter data and see if it correlates to news that affects stock market movements? These are some of the questions that we will answer in this podcast episode.

There are 6 steps for mining Twitter data for sentiment analysis of events that we will cover:

1) Get Twitter API Credentials
2) Setup API Credentials in Python
3) Get Tweet Data via Streaming API using Tweepy
4) Use out-of-the-box sentiment analysis libraries to get sentiment information
5) Plot sentiment information to see trends for events
6) Set this up on AWS or Google Cloud Platform
This episode covers information about saving the tweets in a database, and using them to plot sentiment information.

Corresponding Blog Post With Code: https://towardsdatascience.com/mining-live-twitter-data-for-sentiment-analysis-of-events-d69aa2d136a1?source=friends_link&sk=e06ae49f4ce6fb52157ea0eaee72f4c4
Tweepy: https://github.com/tweepy/tweepy
TextBlob: https://textblob.readthedocs.io/en/dev/
Vader Sentiment: https://github.com/cjhutto/vaderSentiment
Set up AWS instance: https://aws.amazon.com/ec2/getting-started/
Set up GCP instance: https://cloud.google.com/compute/docs/quickstart-linux

My Twitter Profile: https://twitter.com/sanket107
Thanks for listening!

--- Send in a voice message: https://podcasters.spotify.com/pod/show/the-data-life-podcast/message Support this podcast: https://podcasters.spotify.com/pod/show/the-data-life-podcast/support
  continue reading

27 episode

Artwork
iconBagikan
 
Manage episode 243278350 series 2550866
Konten disediakan oleh Sanket Gupta. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Sanket Gupta atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Twitter is a rich source of live information. Is it possible to run sentiment analysis on what the world is thinking as an event unfolds over time? Could we track Twitter data and see if it correlates to news that affects stock market movements? These are some of the questions that we will answer in this podcast episode.

There are 6 steps for mining Twitter data for sentiment analysis of events that we will cover:

1) Get Twitter API Credentials
2) Setup API Credentials in Python
3) Get Tweet Data via Streaming API using Tweepy
4) Use out-of-the-box sentiment analysis libraries to get sentiment information
5) Plot sentiment information to see trends for events
6) Set this up on AWS or Google Cloud Platform
This episode covers information about saving the tweets in a database, and using them to plot sentiment information.

Corresponding Blog Post With Code: https://towardsdatascience.com/mining-live-twitter-data-for-sentiment-analysis-of-events-d69aa2d136a1?source=friends_link&sk=e06ae49f4ce6fb52157ea0eaee72f4c4
Tweepy: https://github.com/tweepy/tweepy
TextBlob: https://textblob.readthedocs.io/en/dev/
Vader Sentiment: https://github.com/cjhutto/vaderSentiment
Set up AWS instance: https://aws.amazon.com/ec2/getting-started/
Set up GCP instance: https://cloud.google.com/compute/docs/quickstart-linux

My Twitter Profile: https://twitter.com/sanket107
Thanks for listening!

--- Send in a voice message: https://podcasters.spotify.com/pod/show/the-data-life-podcast/message Support this podcast: https://podcasters.spotify.com/pod/show/the-data-life-podcast/support
  continue reading

27 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat