Artwork

Konten disediakan oleh HackerNoon. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh HackerNoon atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

From Data Fragmentation to Billion-Dollar Insights: The Vision of Manish Ravindra Sharath

7:19
 
Bagikan
 

Manage episode 516753612 series 3474670
Konten disediakan oleh HackerNoon. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh HackerNoon atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/from-data-fragmentation-to-billion-dollar-insights-the-vision-of-manish-ravindra-sharath.
Manish Ravindra Sharath unified fragmented enterprise data using PySpark & cloud-native systems,boosting efficiency 99% and driving multimillion-dollar growth.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #enterprise-data-engineering, #manish-ravindra-sharath, #pyspark-data-pipeline, #cloud-data-architecture, #data-modernization-strategy, #hybrid-data-infrastructure, #enterprise-analytics, #good-company, and more.
This story was written by: @sanya_kapoor. Learn more about this writer by checking @sanya_kapoor's about page, and for more stories, please visit hackernoon.com.
Manish Ravindra Sharath transformed enterprise decision-making by architecting a unified PySpark-powered data pipeline that cut reporting time from 30+ hours to 30 minutes. His system achieved 99% efficiency, 40% cost reduction, and 30% faster deal closures—turning fragmented data into billion-dollar insights driving global business performance.

  continue reading

154 episode

Artwork
iconBagikan
 
Manage episode 516753612 series 3474670
Konten disediakan oleh HackerNoon. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh HackerNoon atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/from-data-fragmentation-to-billion-dollar-insights-the-vision-of-manish-ravindra-sharath.
Manish Ravindra Sharath unified fragmented enterprise data using PySpark & cloud-native systems,boosting efficiency 99% and driving multimillion-dollar growth.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #enterprise-data-engineering, #manish-ravindra-sharath, #pyspark-data-pipeline, #cloud-data-architecture, #data-modernization-strategy, #hybrid-data-infrastructure, #enterprise-analytics, #good-company, and more.
This story was written by: @sanya_kapoor. Learn more about this writer by checking @sanya_kapoor's about page, and for more stories, please visit hackernoon.com.
Manish Ravindra Sharath transformed enterprise decision-making by architecting a unified PySpark-powered data pipeline that cut reporting time from 30+ hours to 30 minutes. His system achieved 99% efficiency, 40% cost reduction, and 30% faster deal closures—turning fragmented data into billion-dollar insights driving global business performance.

  continue reading

154 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar