Artwork

Konten disediakan oleh HackerNoon. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh HackerNoon atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

How to Scrape Data Off Wikipedia: Three Ways (No Code and Code)

4:11
 
Bagikan
 

Manage episode 431877236 series 3474159
Konten disediakan oleh HackerNoon. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh HackerNoon atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-scrape-data-off-wikipedia-three-ways-no-code-and-code.
Get your hands on excellent manually annotated datasets with Google Sheets or Python
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #python, #google-sheets, #data-analysis, #pandas, #data-scraping, #web-scraping, #wikipedia-data, #scraping-wikipedia-data, and more.
This story was written by: @horosin. Learn more about this writer by checking @horosin's about page, and for more stories, please visit hackernoon.com.
For a side project, I turned to Wikipedia tables as a data source. Despite their inconsistencies, they proved quite useful. I explored three methods for extracting this data: - Google Sheets: Easily scrape tables using the =importHTML function. - Pandas and Python: Use pd.read_html to load tables into dataframes. - Beautiful Soup and Python: Handle more complex scraping, such as extracting data from both tables and their preceding headings. These methods simplify data extraction, though some cleanup is needed due to inconsistencies in the tables. Overall, leveraging Wikipedia as a free and accessible resource made data collection surprisingly easy. With a little effort to clean and organize the data, it's possible to gain valuable insights for any project.

  continue reading

474 episode

Artwork
iconBagikan
 
Manage episode 431877236 series 3474159
Konten disediakan oleh HackerNoon. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh HackerNoon atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-scrape-data-off-wikipedia-three-ways-no-code-and-code.
Get your hands on excellent manually annotated datasets with Google Sheets or Python
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #python, #google-sheets, #data-analysis, #pandas, #data-scraping, #web-scraping, #wikipedia-data, #scraping-wikipedia-data, and more.
This story was written by: @horosin. Learn more about this writer by checking @horosin's about page, and for more stories, please visit hackernoon.com.
For a side project, I turned to Wikipedia tables as a data source. Despite their inconsistencies, they proved quite useful. I explored three methods for extracting this data: - Google Sheets: Easily scrape tables using the =importHTML function. - Pandas and Python: Use pd.read_html to load tables into dataframes. - Beautiful Soup and Python: Handle more complex scraping, such as extracting data from both tables and their preceding headings. These methods simplify data extraction, though some cleanup is needed due to inconsistencies in the tables. Overall, leveraging Wikipedia as a free and accessible resource made data collection surprisingly easy. With a little effort to clean and organize the data, it's possible to gain valuable insights for any project.

  continue reading

474 episode

Kaikki jaksot

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar