Artwork

Konten disediakan oleh Brian Carter. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Brian Carter atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Certainty and OOD Detection in Medical Images and Multiple Sclerosis

7:14
 
Bagikan
 

Manage episode 444738221 series 3605861
Konten disediakan oleh Brian Carter. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Brian Carter atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

This research paper investigates the challenges of detecting Out-of-Distribution (OOD) inputs in medical image segmentation tasks, particularly in the context of Multiple Sclerosis (MS) lesion segmentation. The authors propose a novel evaluation framework that uses 14 different sources of OOD, including synthetic artifacts and real-world variations in imaging data. They examine various uncertainty quantification (UQ) methods, including Maximum Softmax Probability (MSP), Monte Carlo dropout (MC dropout), Deep Ensemble (DE), and Deterministic Uncertainty Methods (DUM). Their findings demonstrate that multiclass segmentation models, which segment both lesions and anatomical regions, significantly outperform binary models in detecting OOD inputs. This suggests that incorporating anatomical information helps the models better understand the context of the input images and recognize abnormalities. The study also highlights the potential of DUM for efficient and effective OOD detection in medical image segmentation.

Read more: https://arxiv.org/pdf/2211.05421

  continue reading

71 episode

Artwork
iconBagikan
 
Manage episode 444738221 series 3605861
Konten disediakan oleh Brian Carter. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Brian Carter atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

This research paper investigates the challenges of detecting Out-of-Distribution (OOD) inputs in medical image segmentation tasks, particularly in the context of Multiple Sclerosis (MS) lesion segmentation. The authors propose a novel evaluation framework that uses 14 different sources of OOD, including synthetic artifacts and real-world variations in imaging data. They examine various uncertainty quantification (UQ) methods, including Maximum Softmax Probability (MSP), Monte Carlo dropout (MC dropout), Deep Ensemble (DE), and Deterministic Uncertainty Methods (DUM). Their findings demonstrate that multiclass segmentation models, which segment both lesions and anatomical regions, significantly outperform binary models in detecting OOD inputs. This suggests that incorporating anatomical information helps the models better understand the context of the input images and recognize abnormalities. The study also highlights the potential of DUM for efficient and effective OOD detection in medical image segmentation.

Read more: https://arxiv.org/pdf/2211.05421

  continue reading

71 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar