Artwork

Konten disediakan oleh Brian Carter. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Brian Carter atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

MLE-bench for Engineering Tasks

10:23
 
Bagikan
 

Manage episode 444719341 series 3605861
Konten disediakan oleh Brian Carter. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Brian Carter atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

This research introduces MLE-bench, a benchmark for evaluating how well AI agents perform machine learning engineering tasks. The benchmark is comprised of 75 Kaggle competitions, chosen for their difficulty and representativeness of real-world ML engineering skills. Researchers evaluated several state-of-the-art language models on MLE-bench, finding that the best-performing model achieved at least a bronze medal in 16.9% of the competitions. The researchers also explored how performance varies based on factors like the amount of time and compute resources available to the agents. Finally, the paper discusses potential issues like contamination (when agents learn from publicly available solutions), as well as the limitations of MLE-bench. The goal is to understand the capabilities and risks associated with AI agents that can autonomously perform machine learning engineering.

Read more: https://arxiv.org/pdf/2410.07095v1

  continue reading

71 episode

Artwork
iconBagikan
 
Manage episode 444719341 series 3605861
Konten disediakan oleh Brian Carter. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Brian Carter atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

This research introduces MLE-bench, a benchmark for evaluating how well AI agents perform machine learning engineering tasks. The benchmark is comprised of 75 Kaggle competitions, chosen for their difficulty and representativeness of real-world ML engineering skills. Researchers evaluated several state-of-the-art language models on MLE-bench, finding that the best-performing model achieved at least a bronze medal in 16.9% of the competitions. The researchers also explored how performance varies based on factors like the amount of time and compute resources available to the agents. Finally, the paper discusses potential issues like contamination (when agents learn from publicly available solutions), as well as the limitations of MLE-bench. The goal is to understand the capabilities and risks associated with AI agents that can autonomously perform machine learning engineering.

Read more: https://arxiv.org/pdf/2410.07095v1

  continue reading

71 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar