Artwork

Konten disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Improving Analytics Using Enriched Network Flow Data

1:02:25
 
Bagikan
 

Manage episode 361742674 series 1264075
Konten disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Classic tool suites that are used to process network flow records deal with very limited detail on the network connections they summarize. These tools limit detail for several reasons: (1) to maintain long-baseline data, (2) to focus on security-indicative data fields, and (3) to support data collection across large or complex infrastructures. However, a consequence of this limited detail is that analysis results based on this data provide information about indications of behavior rather than information that accurately identifies behavior with high confidence. In this webcast, Tim Shimeall and Katherine Prevost discuss how to use IPFIX-formatted data with detail derived from deep packet inspection (DPI) to provide increased confidence in identifying behavior.

  continue reading

153 episode

Artwork
iconBagikan
 
Manage episode 361742674 series 1264075
Konten disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Classic tool suites that are used to process network flow records deal with very limited detail on the network connections they summarize. These tools limit detail for several reasons: (1) to maintain long-baseline data, (2) to focus on security-indicative data fields, and (3) to support data collection across large or complex infrastructures. However, a consequence of this limited detail is that analysis results based on this data provide information about indications of behavior rather than information that accurately identifies behavior with high confidence. In this webcast, Tim Shimeall and Katherine Prevost discuss how to use IPFIX-formatted data with detail derived from deep packet inspection (DPI) to provide increased confidence in identifying behavior.

  continue reading

153 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat