Konten disediakan oleh Springer Nature. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Springer Nature atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Orang-orang menyukai kami!

Ulasan pengguna

"Suka fungsi offline"
"Inilah "cara" untuk menangani langganan podcast Anda. Ini juga cara yang bagus untuk menemukan podcast baru."

AI-based analysis of social media language predicts addiction treatment dropout at 90 days

9:09
 
Bagikan
 

Manage episode 366899112 series 1455694
Konten disediakan oleh Springer Nature. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Springer Nature atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
In-person treatment for substance use disorders is an incredibly important tool, but there’s a high failure rate — more than 50 percent of people who enter drop out within the first month. There hasn’t been a highly accurate method of identifying who might leave and who might succeed, and knowing this could help centers allocate resources to give the right type of assistance to the right people at the right time. One tool available is called the Addiction Severity Index, which is used to help identify the severity of the addiction and thus customize treatment, but it wasn’t developed to gauge whether a patient might drop out entirely. So a team of researchers decided to mine something known as a digital phenotype. Dr. Brenda Curtis is a clinical researcher at the National Institute on Drug Abuse Intramural Research Program, and she’s one of the paper’s authors. Read the full study here: https://www.nature.com/articles/s41386-023-01585-5
  continue reading

524 episode

iconBagikan
 
Manage episode 366899112 series 1455694
Konten disediakan oleh Springer Nature. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Springer Nature atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
In-person treatment for substance use disorders is an incredibly important tool, but there’s a high failure rate — more than 50 percent of people who enter drop out within the first month. There hasn’t been a highly accurate method of identifying who might leave and who might succeed, and knowing this could help centers allocate resources to give the right type of assistance to the right people at the right time. One tool available is called the Addiction Severity Index, which is used to help identify the severity of the addiction and thus customize treatment, but it wasn’t developed to gauge whether a patient might drop out entirely. So a team of researchers decided to mine something known as a digital phenotype. Dr. Brenda Curtis is a clinical researcher at the National Institute on Drug Abuse Intramural Research Program, and she’s one of the paper’s authors. Read the full study here: https://www.nature.com/articles/s41386-023-01585-5
  continue reading

524 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Panduan Referensi Cepat