Artwork

Konten disediakan oleh EM360. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh EM360 atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Data Labelling: The Secret Sauce Behind AI Models

17:48
 
Bagikan
 

Manage episode 439318156 series 2877567
Konten disediakan oleh EM360. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh EM360 atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Data labelling is a critical step in developing AI models, providing the foundation for accurate predictions and smart decision-making. Labelled data helps machine learning algorithms understand input data by assigning meaningful tags to raw data—such as images, text, or audio—ensuring that AI models can recognise patterns and make informed decisions.

AI models struggle to learn and perform tasks effectively without high-quality labelled data. Proper data labelling enhances model accuracy, reduces errors, and accelerates the time it takes to train AI systems. Whether you're working with natural language processing, image recognition, or predictive analytics, the success of your AI project hinges on the quality of your labelled data.

In this episode, Henry Chen, Co-founder and COO of Sapien, speaks to Paulina Rios Maya about the importance of data labelling in training AI models.

Key Takeaways:

  • Data labelling converts raw data into structured data that machine learning models can recognise.
  • Reducing bias and ensuring data quality are critical challenges in data labelling.
  • Expert human feedback plays a crucial role in improving the accuracy of AI training data and refining AI models.

Chapters:

00:00 - Introduction and Background

01:07 - Data Labeling: Converting Raw Data into Useful Data

03:02 - Challenges in Data Labeling: Bias and Data Quality

07:46 - The Role of Expert Human Feedback

09:41 - Ethical Considerations and Compliance

11:09 - The Evolving Nature of AI Models and Continuous Improvement

14:50 - Strategies for Updating and Improving Training Data

17:12 - Conclusion

  continue reading

200 episode

Artwork
iconBagikan
 
Manage episode 439318156 series 2877567
Konten disediakan oleh EM360. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh EM360 atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Data labelling is a critical step in developing AI models, providing the foundation for accurate predictions and smart decision-making. Labelled data helps machine learning algorithms understand input data by assigning meaningful tags to raw data—such as images, text, or audio—ensuring that AI models can recognise patterns and make informed decisions.

AI models struggle to learn and perform tasks effectively without high-quality labelled data. Proper data labelling enhances model accuracy, reduces errors, and accelerates the time it takes to train AI systems. Whether you're working with natural language processing, image recognition, or predictive analytics, the success of your AI project hinges on the quality of your labelled data.

In this episode, Henry Chen, Co-founder and COO of Sapien, speaks to Paulina Rios Maya about the importance of data labelling in training AI models.

Key Takeaways:

  • Data labelling converts raw data into structured data that machine learning models can recognise.
  • Reducing bias and ensuring data quality are critical challenges in data labelling.
  • Expert human feedback plays a crucial role in improving the accuracy of AI training data and refining AI models.

Chapters:

00:00 - Introduction and Background

01:07 - Data Labeling: Converting Raw Data into Useful Data

03:02 - Challenges in Data Labeling: Bias and Data Quality

07:46 - The Role of Expert Human Feedback

09:41 - Ethical Considerations and Compliance

11:09 - The Evolving Nature of AI Models and Continuous Improvement

14:50 - Strategies for Updating and Improving Training Data

17:12 - Conclusion

  continue reading

200 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat