Artwork

Konten disediakan oleh Tessl. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Tessl atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

The Graph Layer Behind NASA’s Breakthroughs | Michael Hunger

36:24
 
Bagikan
 

Manage episode 493310236 series 3585084
Konten disediakan oleh Tessl. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Tessl atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Michael Hunger of Neo4j, joins Simon Maple to unpack how graph databases inject structure, intent, and traceability into modern AI systems.
On the docket:

  • why relationships in data encode intent
  • the black-box problem in vector based RAG
  • why devs should build their own MCP server

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:

  1. Michael Hunger- https://www.linkedin.com/in/jexpde/
  2. Simon Maple- https://www.linkedin.com/in/simonmaple/
  3. Tessl- https://www.linkedin.com/company/tesslio/
  4. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/

(00:00) Trailer
(01:03) Introduction & Neo4j Origins
(03:02) Persisting Relationships for High-Performance Queries
(04:00) Modeling Business Intent & Key Use Cases
(05:00) Fraud Detection at Scale with Graph Algorithms
(06:11) Graph-Enhanced RAG vs. Vector-Only Retrieval
(09:02) Explainability & Drill-Down Evaluation in RAG
(13:05) Fusing Structured & Unstructured Data for Context
(15:00) MCP for Developer Productivity: Schema-to-Code & API Wrapping
(21:16) Security & Sandboxing Best Practices for MCP
(29:08) MCP Server Recommendations & Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

Chapter

1. Trailer (00:00:00)

2. Introduction & Neo4j Origins (00:01:03)

3. Persisting Relationships for High-Performance Queries (00:03:02)

4. Modeling Business Intent & Key Use Cases (00:04:00)

5. Fraud Detection at Scale with Graph Algorithms (00:05:00)

6. Graph-Enhanced RAG vs. Vector-Only Retrieval (00:06:11)

7. Explainability & Drill-Down Evaluation in RAG (00:09:02)

8. Fusing Structured & Unstructured Data for Context (00:13:05)

9. MCP for Developer Productivity: Schema-to-Code & API Wrapping (00:15:00)

10. Security & Sandboxing Best Practices for MCP (00:21:57)

11. MCP Server Recommendations & Outro (00:29:49)

83 episode

Artwork
iconBagikan
 
Manage episode 493310236 series 3585084
Konten disediakan oleh Tessl. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Tessl atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Michael Hunger of Neo4j, joins Simon Maple to unpack how graph databases inject structure, intent, and traceability into modern AI systems.
On the docket:

  • why relationships in data encode intent
  • the black-box problem in vector based RAG
  • why devs should build their own MCP server

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:

  1. Michael Hunger- https://www.linkedin.com/in/jexpde/
  2. Simon Maple- https://www.linkedin.com/in/simonmaple/
  3. Tessl- https://www.linkedin.com/company/tesslio/
  4. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/

(00:00) Trailer
(01:03) Introduction & Neo4j Origins
(03:02) Persisting Relationships for High-Performance Queries
(04:00) Modeling Business Intent & Key Use Cases
(05:00) Fraud Detection at Scale with Graph Algorithms
(06:11) Graph-Enhanced RAG vs. Vector-Only Retrieval
(09:02) Explainability & Drill-Down Evaluation in RAG
(13:05) Fusing Structured & Unstructured Data for Context
(15:00) MCP for Developer Productivity: Schema-to-Code & API Wrapping
(21:16) Security & Sandboxing Best Practices for MCP
(29:08) MCP Server Recommendations & Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

Chapter

1. Trailer (00:00:00)

2. Introduction & Neo4j Origins (00:01:03)

3. Persisting Relationships for High-Performance Queries (00:03:02)

4. Modeling Business Intent & Key Use Cases (00:04:00)

5. Fraud Detection at Scale with Graph Algorithms (00:05:00)

6. Graph-Enhanced RAG vs. Vector-Only Retrieval (00:06:11)

7. Explainability & Drill-Down Evaluation in RAG (00:09:02)

8. Fusing Structured & Unstructured Data for Context (00:13:05)

9. MCP for Developer Productivity: Schema-to-Code & API Wrapping (00:15:00)

10. Security & Sandboxing Best Practices for MCP (00:21:57)

11. MCP Server Recommendations & Outro (00:29:49)

83 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar