Artwork

Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

How Redica Transformed Their Data With Airflow and Snowflake with Shankar Mahindar

23:48
 
Bagikan
 

Manage episode 517970010 series 2053958
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

The life sciences industry relies on data accuracy, regulatory insight and quality intelligence. Building a unified system that keeps these elements aligned is no small feat.

In this episode, we welcome Shankar Mahindar, Senior Data Engineer II at Redica Systems. We discuss how the team restructures its data platform with Airflow to strengthen governance, reduce compliance risk and improve customer experience.

Key Takeaways:

00:00 Introduction.

01:53 A focused analytics platform reduces compliance risk in life sciences.

07:31 A centralized warehouse orchestrated by Airflow strengthens governance.

09:12 Managed orchestration keeps attention on analytics and outcomes.

10:32 A modern transformation stack enables scalable modeling and operations.

11:51 Event-driven pipelines improve data freshness and responsiveness.

14:13 Asset-oriented scheduling and versioning enhance reliability and change control.

16:53 Observability and SLAs build confidence in data quality and freshness.

21:04 Priorities include partitioned assets and streamlined developer tooling.

Resources Mentioned:

Shankar Mahindar

https://www.linkedin.com/in/shankar-mahindar-83a61b137/

Redica Systems | LinkedIn

https://www.linkedin.com/company/redicasystems/

Redica Systems | Website

https://redica.com

Apache Airflow

https://airflow.apache.org/

Astronomer

https://www.astronomer.io/

Snowflake

https://www.snowflake.com/

AWS

https://aws.amazon.com/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Artwork
iconBagikan
 
Manage episode 517970010 series 2053958
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

The life sciences industry relies on data accuracy, regulatory insight and quality intelligence. Building a unified system that keeps these elements aligned is no small feat.

In this episode, we welcome Shankar Mahindar, Senior Data Engineer II at Redica Systems. We discuss how the team restructures its data platform with Airflow to strengthen governance, reduce compliance risk and improve customer experience.

Key Takeaways:

00:00 Introduction.

01:53 A focused analytics platform reduces compliance risk in life sciences.

07:31 A centralized warehouse orchestrated by Airflow strengthens governance.

09:12 Managed orchestration keeps attention on analytics and outcomes.

10:32 A modern transformation stack enables scalable modeling and operations.

11:51 Event-driven pipelines improve data freshness and responsiveness.

14:13 Asset-oriented scheduling and versioning enhance reliability and change control.

16:53 Observability and SLAs build confidence in data quality and freshness.

21:04 Priorities include partitioned assets and streamlined developer tooling.

Resources Mentioned:

Shankar Mahindar

https://www.linkedin.com/in/shankar-mahindar-83a61b137/

Redica Systems | LinkedIn

https://www.linkedin.com/company/redicasystems/

Redica Systems | Website

https://redica.com

Apache Airflow

https://airflow.apache.org/

Astronomer

https://www.astronomer.io/

Snowflake

https://www.snowflake.com/

AWS

https://aws.amazon.com/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar