Artwork

Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

From ETL to Airflow: Transforming Data Engineering at Deloitte Digital with Raviteja Tholupunoori

27:42
 
Bagikan
 

Manage episode 476154207 series 2948506
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Data orchestration at scale presents unique challenges, especially when aiming for flexibility and efficiency across cloud environments. Choosing the right tools and frameworks can make all the difference.

In this episode, Raviteja Tholupunoori, Senior Engineer at Deloitte Digital, joins us to explore how Airflow enhances orchestration, scalability and cost efficiency in enterprise data workflows.

Key Takeaways:

(01:45) Early challenges in data orchestration before implementing Airflow.

(02:42) Comparing Airflow with ETL tools like Talend and why flexibility matters.

(04:24) The role of Airflow in enabling cloud-agnostic data processing.

(05:45) Key lessons from managing dynamic DAGs at scale.

(13:15) How hybrid executors improve performance and efficiency.

(14:13) Best practices for testing and monitoring workflows with Airflow.

(15:13) The importance of mocking mechanisms when testing DAGs.

(17:57) How Prometheus, Grafana and Loki support Airflow monitoring.

(22:03) Cost considerations when running Airflow on self-managed infrastructure.

(23:14) Airflow’s latest features, including hybrid executors and dark mode.

Resources Mentioned:

Raviteja Tholupunoori

https://www.linkedin.com/in/raviteja0096/?originalSubdomain=in

Deloitte Digital

https://www.linkedin.com/company/deloitte-digital/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/solutions/apache-airflow/monitor/

Astronomer Presents: Exploring Apache Airflow® 3 Roadshows

https://www.astronomer.io/events/roadshow/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Artwork
iconBagikan
 
Manage episode 476154207 series 2948506
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Data orchestration at scale presents unique challenges, especially when aiming for flexibility and efficiency across cloud environments. Choosing the right tools and frameworks can make all the difference.

In this episode, Raviteja Tholupunoori, Senior Engineer at Deloitte Digital, joins us to explore how Airflow enhances orchestration, scalability and cost efficiency in enterprise data workflows.

Key Takeaways:

(01:45) Early challenges in data orchestration before implementing Airflow.

(02:42) Comparing Airflow with ETL tools like Talend and why flexibility matters.

(04:24) The role of Airflow in enabling cloud-agnostic data processing.

(05:45) Key lessons from managing dynamic DAGs at scale.

(13:15) How hybrid executors improve performance and efficiency.

(14:13) Best practices for testing and monitoring workflows with Airflow.

(15:13) The importance of mocking mechanisms when testing DAGs.

(17:57) How Prometheus, Grafana and Loki support Airflow monitoring.

(22:03) Cost considerations when running Airflow on self-managed infrastructure.

(23:14) Airflow’s latest features, including hybrid executors and dark mode.

Resources Mentioned:

Raviteja Tholupunoori

https://www.linkedin.com/in/raviteja0096/?originalSubdomain=in

Deloitte Digital

https://www.linkedin.com/company/deloitte-digital/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/solutions/apache-airflow/monitor/

Astronomer Presents: Exploring Apache Airflow® 3 Roadshows

https://www.astronomer.io/events/roadshow/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Minden epizód

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar