Artwork

Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Harnessing Airflow for Data-Driven Policy Research at CSET with Jennifer Melot

17:54
 
Bagikan
 

Manage episode 468755901 series 2948506
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Turning complex datasets into meaningful analysis requires robust data infrastructure and seamless orchestration. In this episode, we’re joined by Jennifer Melot, Technical Lead at the Center for Security and Emerging Technology (CSET) at Georgetown University, to explore how Airflow powers data-driven insights in technology policy research. Jennifer shares how her team automates workflows to support analysts in navigating complex datasets.

Key Takeaways:

(02:04) CSET provides data-driven analysis to inform government decision-makers.

(03:54) ETL pipelines merge multiple data sources for more comprehensive insights.

(04:20) Airflow is central to automating and streamlining large-scale data ingestion.

(05:11) Larger-scale databases create challenges that require scalable solutions.

(07:20) Dynamic DAG generation simplifies Airflow adoption for non-engineers.

(12:13) DAG Factory and dynamic task mapping can improve workflow efficiency.

(15:46) Tracking data lineage helps teams understand dependencies across DAGs.

(16:14) New Airflow features enhance visibility and debugging for complex pipelines.

Resources Mentioned:

Jennifer Melot -

https://www.linkedin.com/in/jennifer-melot-aa710144/

Center for Security and Emerging Technology (CSET) -

https://www.linkedin.com/company/georgetown-cset/

Apache Airflow -

https://airflow.apache.org/

Zenodo -

https://zenodo.org/

OpenLineage -

https://openlineage.io/

Cloud Dataplex -

https://cloud.google.com/dataplex

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Artwork
iconBagikan
 
Manage episode 468755901 series 2948506
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Turning complex datasets into meaningful analysis requires robust data infrastructure and seamless orchestration. In this episode, we’re joined by Jennifer Melot, Technical Lead at the Center for Security and Emerging Technology (CSET) at Georgetown University, to explore how Airflow powers data-driven insights in technology policy research. Jennifer shares how her team automates workflows to support analysts in navigating complex datasets.

Key Takeaways:

(02:04) CSET provides data-driven analysis to inform government decision-makers.

(03:54) ETL pipelines merge multiple data sources for more comprehensive insights.

(04:20) Airflow is central to automating and streamlining large-scale data ingestion.

(05:11) Larger-scale databases create challenges that require scalable solutions.

(07:20) Dynamic DAG generation simplifies Airflow adoption for non-engineers.

(12:13) DAG Factory and dynamic task mapping can improve workflow efficiency.

(15:46) Tracking data lineage helps teams understand dependencies across DAGs.

(16:14) New Airflow features enhance visibility and debugging for complex pipelines.

Resources Mentioned:

Jennifer Melot -

https://www.linkedin.com/in/jennifer-melot-aa710144/

Center for Security and Emerging Technology (CSET) -

https://www.linkedin.com/company/georgetown-cset/

Apache Airflow -

https://airflow.apache.org/

Zenodo -

https://zenodo.org/

OpenLineage -

https://openlineage.io/

Cloud Dataplex -

https://cloud.google.com/dataplex

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar