Artwork

Konten disediakan oleh Karlsruher Institut für Technologie (KIT). Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Karlsruher Institut für Technologie (KIT) atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

14: Wahrscheinlichkeitstheorie, Vorlesung, SS 2016, am 20.06.2016

1:25:26
 
Bagikan
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754104 series 1602822
Konten disediakan oleh Karlsruher Institut für Technologie (KIT). Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Karlsruher Institut für Technologie (KIT) atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
14 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung von Begriffen und Resultaten aus Lektion 13 0:05:26 Satz von Fubini für Übergangswahrscheinlichkeiten 0:12:41 Bemerkungen zur Kopplung (Modellierungsaspekt, Zusammenhang mit bedingten W‘en) 0:22:54 Übergangswahrscheinlichkeiten und Dichten 0:30:16 Beispiel (Münzwürfe mit gleichverteilter Erfolgswahrscheinlichkeit) 0:39:35 Bemerkung (iterierte Berechnung von Erwartungswerten) 0:44:19 Konstruktion der Verteilung eines Zufallsvektors aus Marginalvert. und bedingter Verteil. 0:50:02 Bedingte Verteilung 0:59:23 Beispiel (Verteilungsmischungen) 1:06:49 Beispiel Negative Binomialverteilung als „Gamma-Mischung“ von Poisson-Verteilungen) 1:12:45 Beispiel (bivariate Normalverteilung) 1:20:30 Zerlegung einer gemeinsamen Verteilung in Marginalverteilung und bedingte Verteilung
  continue reading

20 episode

Artwork
iconBagikan
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754104 series 1602822
Konten disediakan oleh Karlsruher Institut für Technologie (KIT). Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Karlsruher Institut für Technologie (KIT) atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
14 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung von Begriffen und Resultaten aus Lektion 13 0:05:26 Satz von Fubini für Übergangswahrscheinlichkeiten 0:12:41 Bemerkungen zur Kopplung (Modellierungsaspekt, Zusammenhang mit bedingten W‘en) 0:22:54 Übergangswahrscheinlichkeiten und Dichten 0:30:16 Beispiel (Münzwürfe mit gleichverteilter Erfolgswahrscheinlichkeit) 0:39:35 Bemerkung (iterierte Berechnung von Erwartungswerten) 0:44:19 Konstruktion der Verteilung eines Zufallsvektors aus Marginalvert. und bedingter Verteil. 0:50:02 Bedingte Verteilung 0:59:23 Beispiel (Verteilungsmischungen) 1:06:49 Beispiel Negative Binomialverteilung als „Gamma-Mischung“ von Poisson-Verteilungen) 1:12:45 Beispiel (bivariate Normalverteilung) 1:20:30 Zerlegung einer gemeinsamen Verteilung in Marginalverteilung und bedingte Verteilung
  continue reading

20 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat