Artwork

Konten disediakan oleh Janis Gösser, David Geisel, Janis Gösser, and David Geisel. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Janis Gösser, David Geisel, Janis Gösser, and David Geisel atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Boost Your Model: Wie funktioniert Data-Science im Maschinenraum?

43:23
 
Bagikan
 

Manage episode 452217722 series 3394916
Konten disediakan oleh Janis Gösser, David Geisel, Janis Gösser, and David Geisel. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Janis Gösser, David Geisel, Janis Gösser, and David Geisel atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Was hat es mit Feature Selection und Feature Engineering auf sich?

Summary: In this conversation, Aleksander Fegel and Dr. David Geisel discuss the critical aspects of feature selection and engineering in data science. They explore the importance of understanding features, the role of data quality, and the necessity of engaging with domain experts. The discussion covers various methods of feature selection, including filter methods, wrapper methods, and embedded methods, emphasizing the need for simplicity and clarity in model building. The conversation concludes with insights on how to effectively interpret model predictions and the significance of collaboration in data science projects.

Takeaways: -Feature selection is essential for successful data modeling. -Data quality significantly impacts model performance. -Engaging with domain experts enhances feature selection. -Simplicity in models often leads to better results. -Feature importance helps in understanding model predictions. -Different methods exist for feature selection, each with pros and cons. -Collaboration between data scientists and domain experts is crucial. -Feature engineering is a continuous process in data science. -Understanding the context of data is vital for effective modeling. -Iterative testing and validation are key to successful feature selection. titles

  continue reading

21 episode

Artwork
iconBagikan
 
Manage episode 452217722 series 3394916
Konten disediakan oleh Janis Gösser, David Geisel, Janis Gösser, and David Geisel. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh Janis Gösser, David Geisel, Janis Gösser, and David Geisel atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Was hat es mit Feature Selection und Feature Engineering auf sich?

Summary: In this conversation, Aleksander Fegel and Dr. David Geisel discuss the critical aspects of feature selection and engineering in data science. They explore the importance of understanding features, the role of data quality, and the necessity of engaging with domain experts. The discussion covers various methods of feature selection, including filter methods, wrapper methods, and embedded methods, emphasizing the need for simplicity and clarity in model building. The conversation concludes with insights on how to effectively interpret model predictions and the significance of collaboration in data science projects.

Takeaways: -Feature selection is essential for successful data modeling. -Data quality significantly impacts model performance. -Engaging with domain experts enhances feature selection. -Simplicity in models often leads to better results. -Feature importance helps in understanding model predictions. -Different methods exist for feature selection, each with pros and cons. -Collaboration between data scientists and domain experts is crucial. -Feature engineering is a continuous process in data science. -Understanding the context of data is vital for effective modeling. -Iterative testing and validation are key to successful feature selection. titles

  continue reading

21 episode

همه قسمت ها

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar