Artwork

Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Orchestrating Analytics and AI Workflows at Telia with Arjun Anandkumar

26:00
 
Bagikan
 

Manage episode 463948888 series 2948506
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

The future of data engineering lies in seamless orchestration and automation. In this episode, Arjun Anandkumar, Data Engineer at Telia, shares how his team uses Airflow to drive analytics and AI workflows. He highlights the challenges of scaling data platforms and how adopting best practices can simplify complex processes for teams across the organization. Arjun also discusses the transformative role of tools like Cosmos and Terraform in enhancing efficiency and collaboration.

Key Takeaways:

(02:16) Telia operates across the Nordics and Baltics, focusing on telecom and energy services.

(03:45) Airflow runs dbt models seamlessly with Cosmos on AWS MWAA.

(05:47) Cosmos improves visibility and orchestration in Airflow.

(07:00) Medallion Architecture organizes data into bronze, silver and gold layers.

(08:34) Task group challenges highlight the need for adaptable workflows.

(15:04) Scaling managed services requires trial, error and tailored tweaks.

(19:46) Terraform scales infrastructure, while YAML templates manage DAGs efficiently.

(20:00) Templated DAGs and robust testing enhance platform management.

(24:15) Open-source resources drive innovation in Airflow practices.

Resources Mentioned:

Arjun Anandkumar -

https://www.linkedin.com/in/arjunanand1/?originalSubdomain=dk

Telia -

https://www.linkedin.com/company/teliacompany/

Apache Airflow -

https://airflow.apache.org/

Cosmos by Astronomer -

https://www.astronomer.io/cosmos/

Terraform -

https://www.terraform.io/

Medallion Architecture by Databricks -

https://www.databricks.com/glossary/medallion-architecture

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Artwork
iconBagikan
 
Manage episode 463948888 series 2948506
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

The future of data engineering lies in seamless orchestration and automation. In this episode, Arjun Anandkumar, Data Engineer at Telia, shares how his team uses Airflow to drive analytics and AI workflows. He highlights the challenges of scaling data platforms and how adopting best practices can simplify complex processes for teams across the organization. Arjun also discusses the transformative role of tools like Cosmos and Terraform in enhancing efficiency and collaboration.

Key Takeaways:

(02:16) Telia operates across the Nordics and Baltics, focusing on telecom and energy services.

(03:45) Airflow runs dbt models seamlessly with Cosmos on AWS MWAA.

(05:47) Cosmos improves visibility and orchestration in Airflow.

(07:00) Medallion Architecture organizes data into bronze, silver and gold layers.

(08:34) Task group challenges highlight the need for adaptable workflows.

(15:04) Scaling managed services requires trial, error and tailored tweaks.

(19:46) Terraform scales infrastructure, while YAML templates manage DAGs efficiently.

(20:00) Templated DAGs and robust testing enhance platform management.

(24:15) Open-source resources drive innovation in Airflow practices.

Resources Mentioned:

Arjun Anandkumar -

https://www.linkedin.com/in/arjunanand1/?originalSubdomain=dk

Telia -

https://www.linkedin.com/company/teliacompany/

Apache Airflow -

https://airflow.apache.org/

Cosmos by Astronomer -

https://www.astronomer.io/cosmos/

Terraform -

https://www.terraform.io/

Medallion Architecture by Databricks -

https://www.databricks.com/glossary/medallion-architecture

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Kaikki jaksot

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar