Artwork

Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.
Player FM - Aplikasi Podcast
Offline dengan aplikasi Player FM !

Overcoming Airflow Scaling Challenges at Monzo Bank with Jonathan Rainer

43:39
 
Bagikan
 

Manage episode 465365556 series 2948506
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Scaling a data orchestration platform to manage thousands of tasks daily demands innovative solutions and strategic problem-solving. In this episode, we explore the complexities of scaling Airflow and the challenges of orchestrating thousands of tasks in dynamic data environments. Jonathan Rainer, Former Platform Engineer at Monzo Bank, joins us to share his journey optimizing data pipelines, overcoming UI limitations and ensuring DAG consistency in high-stakes scenarios.

Key Takeaways:

(03:11) Using Airflow to schedule computation in BigQuery.

(07:02) How DAGs with 8,000+ tasks were managed nightly.

(08:18) Ensuring accuracy in regulatory reporting for banking.

(11:35) Handling task inconsistency and DAG failures with automation.

(16:09) Building a service to resolve DAG consistency issues in Airflow.

(25:05) Challenges with scaling the Airflow UI for thousands of tasks.

(27:03) The role of upstream and downstream task management in Airflow.

(37:33) The importance of operational metrics for monitoring Airflow health.

(39:19) Balancing new tools with root cause analysis to address scaling issues.

(41:35) Why scaling solutions require both technical and leadership buy-in

Resources Mentioned:

Jonathan Rainer -

https://www.linkedin.com/in/jonathan-rainer/

Monzo Bank -

https://www.linkedin.com/company/monzo-bank/

Apache Airflow -

https://airflow.apache.org/

BigQuery -

https://airflow.apache.org/docs/apache-airflow-providers-google/stable/operators/cloud/bigquery.html

Kubernetes -

https://kubernetes.io/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Artwork
iconBagikan
 
Manage episode 465365556 series 2948506
Konten disediakan oleh The Data Flowcast. Semua konten podcast termasuk episode, grafik, dan deskripsi podcast diunggah dan disediakan langsung oleh The Data Flowcast atau mitra platform podcast mereka. Jika Anda yakin seseorang menggunakan karya berhak cipta Anda tanpa izin, Anda dapat mengikuti proses yang diuraikan di sini https://id.player.fm/legal.

Scaling a data orchestration platform to manage thousands of tasks daily demands innovative solutions and strategic problem-solving. In this episode, we explore the complexities of scaling Airflow and the challenges of orchestrating thousands of tasks in dynamic data environments. Jonathan Rainer, Former Platform Engineer at Monzo Bank, joins us to share his journey optimizing data pipelines, overcoming UI limitations and ensuring DAG consistency in high-stakes scenarios.

Key Takeaways:

(03:11) Using Airflow to schedule computation in BigQuery.

(07:02) How DAGs with 8,000+ tasks were managed nightly.

(08:18) Ensuring accuracy in regulatory reporting for banking.

(11:35) Handling task inconsistency and DAG failures with automation.

(16:09) Building a service to resolve DAG consistency issues in Airflow.

(25:05) Challenges with scaling the Airflow UI for thousands of tasks.

(27:03) The role of upstream and downstream task management in Airflow.

(37:33) The importance of operational metrics for monitoring Airflow health.

(39:19) Balancing new tools with root cause analysis to address scaling issues.

(41:35) Why scaling solutions require both technical and leadership buy-in

Resources Mentioned:

Jonathan Rainer -

https://www.linkedin.com/in/jonathan-rainer/

Monzo Bank -

https://www.linkedin.com/company/monzo-bank/

Apache Airflow -

https://airflow.apache.org/

BigQuery -

https://airflow.apache.org/docs/apache-airflow-providers-google/stable/operators/cloud/bigquery.html

Kubernetes -

https://kubernetes.io/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episode

Semua episode

×
 
Loading …

Selamat datang di Player FM!

Player FM memindai web untuk mencari podcast berkualitas tinggi untuk Anda nikmati saat ini. Ini adalah aplikasi podcast terbaik dan bekerja untuk Android, iPhone, dan web. Daftar untuk menyinkronkan langganan di seluruh perangkat.

 

Panduan Referensi Cepat

Dengarkan acara ini sambil menjelajah
Putar